Introduction to Motor3508 Code Analysis

Austin Yang € Illini RoboMaster

[austiny2@illinois.edu, https://www.illinirobomaster.com]

October 18, 2025

CONTENTS

1 INTRODUCTION

1(A) Pran L.
1(B) A NoTE ON CAN IDs.
UNDERSTANDING THE MOTOR3508 HEADER FILE
2(A) CrAss HIERARCHY AND INHERITANCE.
2(B) MOTORCANBASE
2(c¢) VIRTUAL FUNCTIONS AND POLYMORPHISM
2(D) VOLATILE VARIABLES .
UNDERSTANDING THE MOTOR3508 IMPLEMENTATION
3(A) CONSTRUCTOR IMPLEMENTATION .
3(A).1 CALLBACK REGISTRATION
3(B) DATA PARSING IMPLEMENTATION .
3(B).1 CAN DATA STRUCTURE .
3(B).2 BIT SHIFTING .
3(B).3 UNIT CONVERSION AND SCALING .
3(c) CURRENT LIMITING FOR SAFETY .
3(p) DEBUG OuTPUT FUNCTION .
CAN COMMUNICATION FOR MOTOR CONTROL
4(A) TRANSMITOUTPUT IMPLEMENTATION .
4(A).1 MULTI-MOTOR MESSAGE PACKING.
4(A).2 MOTOR INDEX CALCULATION .
4(A).3 DATA PACKING .
4(B) CAN ID MANAGEMENT .

© © N N W ww

e e T S e e T e e S
U O = = W WD NN = OO

mailto:austiny2@illinois.edu
https://www.illinirobomaster.com

5 EXAMPLE

6 CONCEPTS COVERED
6(A) C++ PROGRAMMING .
6(B) EMBEDDED PROGRAMMING
6(c) MoTOR CONTROL

7 CONCLUSION

16
17
17
17
17
18

1 INTRODUCTION
1(A) Pran

This tutorial will go through the Emotor.h and Bmotor. cc files line-by-line with a focus on
analyzing the Motor3508 class implementation. You can find the files covered at
https://github.com/illini-robomaster /iRM__Embedded_ 2026 /blob/embedded __tutorial /shar-
ed/libraries/motor.h

https://github.com/illini-robomaster /iRM__Embedded_ 2026 /blob/embedded __tutorial /shar-
ed/libraries/motor.cc

https://github.com/illini-robomaster /iRM__Embedded 2026 /blob/embedded tutorial/shar-
ed/bsp/bsp_ can.h

You can find the example at

https://github.com/illini-robomaster /iRM__ Embedded_ 2026 /blob/main/examples/mo-
tor/m3508__speed.cc

1(B) A NoTE ON CAN IDs

The 3508 motor uses CAN bus communication for:
e Receiving: Send motor current commands from controller to motor
o Feedback: Receive telemetry data from motor to controller

This should be familiar if you have read the previous tutorial. The IDs we use are chosen for
a reason. Motors send feedback on IDs 0x201 - 0x208 (or O0x1FF + id), and commands
are received by all motors in the group on ID 0x200 (or Ox1FF).

REMARK | Being able to use a single CAN frame to control multiple motors helps with, for
example, synchronization. This will be covered in 4.

https://github.com/illini-robomaster/iRM_Embedded_2026/blob/embedded_tutorial/shared/libraries/motor.h
https://github.com/illini-robomaster/iRM_Embedded_2026/blob/embedded_tutorial/shared/libraries/motor.h
https://github.com/illini-robomaster/iRM_Embedded_2026/blob/embedded_tutorial/shared/libraries/motor.cc
https://github.com/illini-robomaster/iRM_Embedded_2026/blob/embedded_tutorial/shared/libraries/motor.cc
https://github.com/illini-robomaster/iRM_Embedded_2026/blob/embedded_tutorial/shared/bsp/bsp_can.h
https://github.com/illini-robomaster/iRM_Embedded_2026/blob/embedded_tutorial/shared/bsp/bsp_can.h
https://github.com/illini-robomaster/iRM_Embedded_2026/blob/main/examples/motor/m3508_speed.cc
https://github.com/illini-robomaster/iRM_Embedded_2026/blob/main/examples/motor/m3508_speed.cc

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

2 UNDERSTANDING THE MOTOR3508 HEADER FILE
We will start by examining the Motor3508 class definition in [Emotor.h.

2(A) CLASS HIERARCHY AND INHERITANCE

Let’s look at the Motor3508 class declaration:

The Motor3508 class inherits from MotorCANBase , which provides the base functionality
for our DJI motors. You should know what inheritance is in programming languages. Here
it helps us:

e Reuse common functionality
« Maintain consistent interfaces across different motor types (important!)

o Implement different behavior for different motor types

2(B) MOTORCANBASE

The base class MotorCANBase provides the following default functionality:
o CAN object/CAN ID storage

« Common data (-, ‘omega_)

« Standard interface methods (GetTheta(), GetOmega(), etc.)

Take a look:

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

2(c) VIRTUAL FUNCTIONS AND POLYMORPHISM

Notice the wirtual keyword, both in 3508 and the base. The virtual keyword in the
base class enables polymorphism, allowing different motor types to be treated through the
same interface while providing different implementations.

Setting something as virtual forces all its child classes to provide an implementation.
Since C++ is strictly typed, we also have to match the typing no matter what, which makes
it useful for defining interfaces.

Tip | If you are familiar with Python, this is similar to |[ABC and |abstractmethod from
the [dabc module. If you provide annotations, this can ‘enforce’ interfaces (at lint time, that

is).
The ‘override final keywords in the Motor3508 indicate:
« loverride : These functions override virtual functions from the base class.

« |final : No further classes can override these functions.

Tip | Again, in Python, you can use the decorators @override and @final to achieve
similar results.

REMARK | Python 3.14 (wthon) provides many quality of life changes. Update now!

2(D) VOLATILE VARIABLES

Notice the wvolatile keyword on the member variables:

214

215

216

private:
volatile intl6_t raw_current get_
volatile uint8_t raw_temperature_

0;
0;

The wolatile keyword tells the compiler that these variables can change unexpectedly
(e.g., from CAN interrupts). This prevents certain optimizations that might interfere with
real-time data updates.

REMARK | In embedded systems, volatile is commonly used for variables that are shared
between main code and interrupt handlers, or that represent hardware registers.

REMARK | When you compile code, your compiler automatically performs optimizations
(you can control this). Typing helps optimization: the stronger the restrictions, the more
the compiler can do to optimize. We usually assume things are not volatile, and the compiler
does not either; we must use volatile to explicitly mark them as such.

3 UNDERSTANDING THE MOTOR3508 IMPLEMENTATION
Now let us examine the Motor3508 implementation in Bmotor. cc.

3(A) CONSTRUCTOR IMPLEMENTATION

9

117

118

49

50

51

52

can->RegisterRxCallback(rx_id, can_motor_callback, this);

H

The constructor does two things:

1. Calls the base class constructor with a pointer to the CAN instance ((can) and the
receive ID ((rx_id).

2. Registers a callback function to handle incoming CAN data.

REMARK | This is different from the callback function presented in the first tutorial; that
one was for Linux CAN. However, their functionality is similar.

Exercise: Look through the code for RegisterRxCallback and figure out how it is imple-
mented. Starting point: look at what it does in 3(a).1.

3(a).1 Callback Registration

The RegisterRxCallback function sets up an interrupt handler that will automatically

call can_motor_callback whenever a CAN message with the specified ID is received.

static void can_motor_callback(const uint8_t data[], void* args) {
MotorCANBase* motor = reinterpret_cast<MotorCANBasex*>(args);
motor->UpdateData(data) ;

I;

The concept of callbacks (or sometimes a “hook”) is extremely important for embedded
systems. Imagine if everything had to poll everything else for what they need. That would
be very messy and ugly.

e reinterpret cast converts the generic void pointer back to our MotorCANBase*
(remember what a void pointer is?).

o From the motor we just recast, we call UpdateData on the data we received.

This works for any motor type that inherits from MotorCANBase . If you read the first
tutorial, this should seem very familiar!

Tip | You will get an introduction to interrupts near the end of ECE 120, if you take it.

3(B) DATA PARSING IMPLEMENTATION

The UpdateData function is where the metaphorical magic happens. We parse (decode)
the received data based on whatever was written on the datasheet of our motor.

10

120

121

122

123

124

125

126

127

128

129

130

131

132

You can find the datasheet for the C620 controller (used to control the M3508) here:
https://rm-static.djicdn.com/tem /17348 /RoboMaster %20C620%20Brushless%20DC%20Mo-
tor%20Speed %20Controller %20V 1.01.pdf.

3(b).1 CAN Data Structure

From examining the code, or reading the data sheet (page 17), we can figure out that the
3508 motor sends 8 bytes of data per CAN frame in the following format:

| Bytes | Decoded as | Description |

‘raw_current_get_ | Torque current (upper 8 bits)

Torque current (lower 8 bits)
Motor temperature (8 bits)
Null Unused

| O U =

Table 1: C620 data frame format

Remeber what a CAN data frame is from tutorial 27 From the datasheet,

| Data | Format /Units |

(—20A to 20A)

Table 2: C620 data frame field units

11

https://rm-static.djicdn.com/tem/17348/RoboMaster%20C620%20Brushless%20DC%20Motor%20Speed%20Controller%20V1.01.pdf
https://rm-static.djicdn.com/tem/17348/RoboMaster%20C620%20Brushless%20DC%20Motor%20Speed%20Controller%20V1.01.pdf
https://rm-static.djicdn.com/tem/17348/RoboMaster%20C620%20Brushless%20DC%20Motor%20Speed%20Controller%20V1.01.pdf

121

126

127

3(b).2 Bit Shifting

We use bit shifting operations combine individual bytes into 2-byte values:

const intl6_t raw_theta = datal[0] << 8 | datall];

This is equivalent to (and better than): raw_theta = (data[0] * 256) + data[1]
o data[0] << 8: Shift the high byte left by 8 bits (multiply by 256)
e || data[1] : Combine with the low byte using bitwise OR

Let us act it out, step by step (binary a;,b; € Z/2Z):

oo T x [z [e aa T s [s []

Dummy datal[0] (8-bit)

o T B [[B 55 [6 []

Dummy data[1] (8-bit)

o] e[] @ @]] a]] 0] 0] 0] 0] 0] 0] 0] 0]

datal[0] << 8

awo] afa[afala]a|a]bfbfb]b]b]b]b]b]

data[0] << 8 | data[1] (16-bit)

Don’t worry too much about intermediate types: C++ automatically converts your data
when using bitshift operators, and everything is implicitly converted back to uint16_t on

assignment.

One thing we have to worry about, though, is sign extension — you will encounter this in

ECE 110, if you take it (search it up if not). This is why we store data as uint8_t .

3(b).3 Unit Conversion and Scaling

The constexpr variables define conversion factors:

constexpr float THETA_SCALE
constexpr float OMEGA_SCALE

2 *x PI / 8192; // digital -> rad
2 * PI / 60; // rom -> rad / sec

These convert raw motor data to the units we want:

12

141

142

143

144

134

135

136

137

138

139

« Position: 8192 encoder counts = 27 rad (one rotation)
« Velocity: 1 RPM = 27/60 rads™"

REMARK | Using _ ensures these calculations are performed at compile time,
saving computational resources on the embedded system.

REMARK | Remeber what we mentioned in 2(d)? This is an example of declaring a restric-
tion to help the compiler make optimizations.

3(c) CURRENT LIMITING FOR SAFETY

This critical safety function prevents damage to the motor:

 Clips the output command to £14690 units (ignore the comment, it wasn’t changed
when changing the limit).

« Uses the - to enforce limits (notice the template — you should be familiar from
the first tutorial!).

Tip | Always include safety limits! Motors cost money, and the smoke does not smell good.

3(p) DEBUG OUTPUT FUNCTION

This function provides formatted output for debugging:

. -: Print float with 4 decimal places, signed.
. -: Print integer with minimum 3 characters width.

. -: Print signed integer with space for positive numbers.

. -: Both types of newlines.

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

4 CAN COMMUNICATION FOR MOTOR CONTROL

Let’s examine how multiple motors are controlled simultaneously through CAN.

4(A) TRANSMITOUTPUT IMPLEMENTATION

The static method (from MotorCANBase) sends commands to multiple

motors in a single CAN frame:

4(a).1 Multi-motor Message Packing

This function packs up to 4 motor commands into one 8-byte CAN message:

| CAN Bytes | Motor ID | Data |
0-1 Motor 1 (ID 0x201) | Current command (16-bit)
2-3 Motor 2 (ID 0x202) | Current command (16-bit)
4-5 Motor 3 (ID 0x203) | Current command (16-bit)
6-7 Motor 4 (ID 0x204) | Current command (16-bit)

Table 3: CAN Command Message Format for Multiple Motors
You can find this on page 15 of the manual (at the bottom of 3(a).1).

4(a).2 Motor Index Calculation

Tie line 65856 4RE8LE o8R8 = o8er8 I SBELEAL = 1)) maps motor BX

IDs to array indices:

« Motor with RX ID [0x201 —index 0 —CAN bytes 0-1

14

) A

message") ;

89

90

56

57

58

59

60

61

o Motor with RX ID 0x202 —index 1 —CAN bytes 2-3
o Motor with RX ID 0203 —index 2 —CAN bytes 4-5
o Motor with RX ID 0x204 —index 3 —CAN bytes 6-7

Tip | Modulo arithmetic (% 4) allows the same function to work with multiple motor
groups (/0x205 - 0x208 would map to the same byte positions).

REMARK | Completely unrelated: modulo arithmetic is related to a whole branch of math-
ematics.

4(a).3 Data Packing

The bit manipulation to pack 16-bit motor commands into bytes (The comments aren’t a
part of the original file):

datal[2 * motor_idx] = output >> 8; // High byte
data[2 * motor_idx + 1] = output & OxFF; // Low byte

This is the reverse of the parsing operation we saw earlier - splitting a 16-bit value into two
8-bit bytes for transmission.

Exercise: draw it out like I did in 3(b).2. Or at least think about it.

4(B) CAN ID MANAGEMENT

The MotorCANBase constructor automatically determines the correct TX ID based on the
motor’s RX ID:

constexpr uintl6_t RX1_ID START = 0x201;
constexpr uint16_t RX2_ID_START = 0x205;
constexpr uint16_t RX3_ID_START = 0x209;

constexpr uintl6_t TX1_ID = 0x200;
constexpr uintl6_t TX2_ID = Ox1ff;
constexpr uintl6_t TX3_ID = Ox2ff;

This creates three motor groups:
e Group 1: Motors 0x201 - 0x204 send feedback on 0x200.
o Group 2: Motors 0x205 —0x208 send feedback on Ox1FF.

o Group 3: Motors 0x209 — 0x20C send feedback on 0x2FF.

15

5 EXAMPLE

Let’s examine an example: [Em3508_speed. cc.

You should be able to understand this. If you weren’t here for the PID lecture, wait for the
next tutorial.

6 CONCEPTS COVERED

We analyzed the following concepts in the Motor3508 implementation:

6(A) C++ PROGRAMMING

o C(Class inheritance and polymorphism

virtual functions and method overriding

volatile keyword for real-time data

constexpr for compile-time calculations

Static methods for shared functionality

6(B) EMBEDDED PROGRAMMING

e More CAN

o Interrupts and callbacks

 Bit manipulation for data packing/unpacking

6(c) MoTOR CONTROL

e Encoder data parsing
o Current limiting for motor protection

e Multi-motor coordination

17

7 (CONCLUSION

This tutorial provided an analysis of the Motor3508 code implementation, demonstrating
how embedded motor control systems are designed and implemented in practice.

Same as previous tutorials: if there are any concepts you do not completely understand,
search them up and ask an LLM for clarification.

18

	Introduction
	Plan
	A note on CAN IDs

	Understanding the Motor3508 Header File
	Class Hierarchy and Inheritance
	MotorCANBase
	Virtual Functions and Polymorphism
	Volatile Variables

	Understanding the Motor3508 Implementation
	Constructor Implementation
	Callback Registration

	Data Parsing Implementation
	CAN Data Structure
	Bit Shifting
	Unit Conversion and Scaling

	Current Limiting for Safety
	Debug Output Function

	CAN Communication for Motor Control
	TransmitOutput Implementation
	Multi-motor Message Packing
	Motor Index Calculation
	Data Packing

	CAN ID Management

	Example
	Concepts Covered
	C++ Programming
	Embedded Programming
	Motor Control

	Conclusion

