
Introduction to C++ with Linux CAN

Austin Yang ∈ Illini RoboMaster
[austiny2@illinois.edu, https://www.illinirobomaster.com]

September 28, 2025

Contents
1 Introduction 4

1(a) Plan . 4
1(b) Basic Knowledge . 4

1(b).1 Types . 4
1(b).2 Pointers. 5

2 Understanding our CAN Header File 6
2(a) Why header and source files? 6
2(b) Include Guards and Headers 6

2(b).1 Comments . 7
2(b).2 Include Statements . 8
2(b).3 Pragma Once . 8

2(c) Constants and Namespaces 9
2(d) Typedef and Function Pointers 9
2(e) Class Declaration . 10

2(e).1 Access Specifiers . 11
2(e).2 Constructors and Destructors 11
2(e).3 Member Functions. 12
2(e).4 Member Variables . 13

2(f) Namespace Closing and a Note 13
3 Understanding our CAN Source File 14

3(a) Include Statements and Namespace. 14
3(b) Constructor Implementation 15

3(b).1 Scope Resolution . 15
3(b).2 Socket Creation . 15
3(b).3 Error Handling . 16

1

mailto:austiny2@illinois.edu
https://www.illinirobomaster.com

3(b).4 String Operations . 16
3(b).5 System Calls . 16
3(b).6 Struct Initialization 17
3(b).7 Binding . 17
3(b).8 Atomic Operations . 18

3(c) Destructor Implementation 18
3(d) Transmit Method. 18

3(d).1 Struct Field Assignment 18
3(d).2 DLC and Utility Function 19
3(d).3 Memory Copying . 20
3(d).4 Writing to Socket . 20

3(e) Receive Method . 20
3(e).1 Reading from Socket 20
3(e).2 Auto Keyword . 21
3(e).3 Map Lookup . 21
3(e).4 Iterator Usage . 21
3(e).5 Callback Function . 21

3(f) Device Registration Methods 22
3(f).1 Size Checking . 23
3(f).2 Pair Creation . 23
3(f).3 Map Erasure . 23

3(g) Thread Management . 23
3(g).1 Lambda Functions . 24
3(g).2 Thread . 24
3(g).3 Thread Detachment . 24

3(h) Close Method . 24
4 Using the CAN Class: Examples 25

4(a) CAN Receive Example . 25
4(a).1 Object Creation . 25
4(a).2 Method Calls . 25
4(a).3 Infinite Loop . 26

4(b) CAN Send Example . 26
4(c) Receive Thread Example . 26

5 Concepts Covered 28
5(a) Basic Syntax . 28
5(b) Object-Oriented Programming 28

2

5(c) Memory Management . 28
5(d) Standard Library. 28
5(e) System Programming . 28
5(f) Modern C++ Features . 29

6 Conclusion 30

3

1 Introduction
1(a) Plan

This tutorial will go through FILE-ALTcan.h and FILE-ALTcan.cc line-by-line as an introduction to C++.
We will cover concepts in:

• Basic C++ syntax and structure

• Object-oriented programming concepts

• Libraries and the standard library

• GNU+Linux and UNIX

You can find the files covered at
https://github.com/illini-robomaster/irm_jetson/blob/main/src/include/board/can.h
and the source file code at
https://github.com/illini-robomaster/irm_jetson/blob/main/src/include/board/can.cc
You can find the examples at
https://github.com/illini-robomaster/irm_jetson/blob/main/src/examples/can_recieve.cc
https://github.com/illini-robomaster/irm_jetson/blob/main/src/examples/can_send.cc
https://github.com/illini-robomaster/irm_jetson/blob/main/src/examples/motor_m3508.cc

1(b) Basic Knowledge

I will assume the most basic knowledge of programming. I will take time in the introduction
to go over types and pointers. If you are familiar, please skip this subsection and proceed
directly to section 2.

Do note that these two introductions are partially written by AI.

1(b).1 Types

In C++, a type is a classification that specifies what kind of value a variable can hold and
what operations can be performed on it. C++ has several fundamental types: C++ also

Type Description Size (typical)
bool Boolean value 1 byte
char Character 1 byte
int Integer 4 bytes
float Single-precision floating point 4 bytes
double Double-precision floating point 8 bytes
void No type N/A

Table 1: Common C++ Fundamental Types

allows for type modifiers like signed , unsigned , short , and long to modify the range

4

https://github.com/illini-robomaster/irm_jetson/blob/main/src/include/board/can.h
https://github.com/illini-robomaster/irm_jetson/blob/main/src/include/board/can.cc
https://github.com/illini-robomaster/irm_jetson/blob/main/src/examples/can_recieve.cc
https://github.com/illini-robomaster/irm_jetson/blob/main/src/examples/can_send.cc
https://github.com/illini-robomaster/irm_jetson/blob/main/src/examples/motor_m3508.cc

of values a type can hold. Additionally, C++ supports compound types like arrays, pointers,
and references.

In our code, we will use the more verbose types like uint8_t etc. This is common in
embedded programming.

1(b).2 Pointers

A pointer is a variable that stores the memory address of another variable. Think of it as
a label that points to a location in memory where data is stored. Pointers are fundamental
to C++ and enable features like dynamic memory allocation and efficient array handling.
Here’s a simple example:

Operator Symbol Purpose
Address-of & Gets the memory address of a variable
Dereference * Accesses the value at the memory address
Member access -> Accesses members of an object through a pointer

Table 2: Pointer Operators in C++

int x = 5; // Declare an integer variable
int *ptr; // Declare a pointer to an integer
ptr = &x; // Store the address of x in ptr

After this code executes, ptr contains the memory address of x . To access the value stored
at that address (i.e., the value of x), you would dereference the pointer using *ptr , which
would give you 5 . Pointers are especially important in C++ for memory management,

Concept Syntax Explanation
Pointer declaration int *ptr Declares a pointer to

an integer
Address assignment ptr = &x Assigns the address of

x to ptr
Dereferencing *ptr = 10 Sets the value at the

address stored in ptr
to 10

Pointer to pointer int **ptr2 A pointer to a pointer
to an integer

Table 3: Pointer Syntax and Usage

creating dynamic data structures, and interfacing with system-level code.

5

2 Understanding our CAN Header File
We will start by examining our header file FILE-ALTcan.h.

2(a) Why header and source files?

In C++, we typically split our code into header files (.h) and source files (.cc or .cpp)
for two main reasons:

Convenience: Header files act as an interface for our code. They tell other programmers
(and the compiler) what functions and classes are available, what parameters they take, and
what they return. This makes it easier for others (humans or your IDE) to work with your
code.
Compilation: When you #include a file, you are essentially pasting its contents into
place. You don’t want the implementation there.

The compilation process works in two main stages:

1. Compile: Each .cc file is compiled independently into an object file (.o), check-
ing what functions and classes exist/their definitions against the header files (.h).
Preprocessor directives (code starting with #) are run before compilation.

2. Link: The linker combines all the object files together, resolving references between
them to create the final executable.

Remark | If you were to write FILE-ALTfoo.h without the corresponding implementation in
FILE-ALTfoo.cc and tried to #include it in another file, you would only get a complaint dur-
ing the linking step (you would see the Angle-Right ld (linker) program error).

2(b) Include Guards and Headers

1 /**
2 * *
3 * Copyright (C) 2025 RoboMaster. *
4 * Illini RoboMaster @ University of Illinois at Urbana-Champaign *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 3 of the License, or *
9 * (at your option) any later version. *

10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *

6

17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 * *
19 **/
20

21 #include <atomic>
22 #include <iostream>
23 #include <linux/can.h>
24 #include <linux/can/raw.h>
25 #include <map>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <sys/ioctl.h>
29 #include <sys/socket.h>
30 #include <unistd.h>
31

32 #pragma once

2(b).1 Comments

1 /**
2 * *
3 * Copyright (C) 2025 RoboMaster. *
4 * Illini RoboMaster @ University of Illinois at Urbana-Champaign *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 3 of the License, or *
9 * (at your option) any later version. *

10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 * *
19 **/

The file begins with a large comment block that contains licensing information. This is
standard practice.

Remark | The most common open source licences you will see are MIT, Apache and GPL.
MIT, Apache, and LGPL licenses are less restrictive, while most forms of the GPL are copyleft
licenses. Copyleft licenses force all software that includes the licensed code to be copylefted
and open source as well. Read more at https://www.gnu.org/licenses/license-list.html.

7

https://www.gnu.org/licenses/license-list.html

In C++, comments can be written in two ways:

• /* comment */ for multi-line comments

• // comment for single-line comments

This should be self-explanatory.

Remark | Comments are not just for the user. They are often used to generate documen-
tation by an IDE or external program (these are referred to as docstrings). Therefore you
should try to follow a style guide when writing comments.

2(b).2 Include Statements

21 #include <atomic>
22 #include <iostream>
23 #include <linux/can.h>
24 #include <linux/can/raw.h>
25 #include <map>
26 #include <net/if.h>
27 #include <stdint.h>
28 #include <sys/ioctl.h>
29 #include <sys/socket.h>
30 #include <unistd.h>

The #include directive tells the compiler to include the contents of other files. You may
notice there are two different types:

• #include <filename> for system headers (standard library and system libraries)

• #include "filename" for “local” headers (i.e. our own files)

Notice how we include both standard C++ libraries like Bookmarkatomic and Bookmarkiostream, as well
as Linux system headers for CAN communication like Bookmarklinux/can.h.

Tip | You can run Angle-Right g++ -H -fsyntax-only foo.h in your terminal to find out where
the headers included in FILE-ALTfoo.h are on your computer.

Remark | For me, Bookmarkatomic lives under Folder-Open/usr/include/c++/15.2.1/atomic while Bookmarklinux/sys.h
lives at FILE-ALT/usr/include/linux/can.h.

2(b).3 Pragma Once

32 #pragma once

The #pragma once directive is a header guard that tells the compiler to not include the
same file multiple times. This is important because including the same file multiple times
can lead to errors.

Remark | This is not magic; you can implement this manually using preprocessor directives
(remember?) like #ifndef .

8

2(c) Constants and Namespaces

34 #define MAX_CAN_DEVICES 12
35

36 namespace CANRAW {

Here we define a constant MAX_CAN_DEVICES using the preprocessor directive #define .
Constants defined this way in C++ are replaced by their values before compilation.

Here we meet a namespace . Namespaces are used to group related code and prevent nam-
ing conflicts. Everything within the CANRAW namespace can be accessed using the scope
resolution operator :: , i.e. CANRAW::function_name .

Remark | You have probably encountered namespaces in other programming languages.
For example, variables in a function cannot be accesed outside of the function. C++ is
unlike, for example, Python, in that it does this more explicitly.

2(d) Typedef and Function Pointers

37

38 typedef void (*can_rx_callback_t)(const uint8_t data[], void *args);
39

We meet typedef .

C++ is a typed language. If you do not know what a type or a type signature is, please
consult a search engine. A typedef creates a new type from existing ones.

Remark | If you are familiar with Python, this is similar to a type alias. If I were to define
an equivalent type in Python, it would look something like

from typing import *
CANRxCallbackType: TypeAlias = Callable[Tuple[Tuple[bytes], Any], None]

We typedef a pointer to such a function, hence

• void : The function returns nothing.

• (*can_rx_callback_t) : This is the name of our alias, with the asterisk indicating it
is a pointer. We wrap it in parenthesis so it’s a pointer to a function (void (*func))
and not a function that returns a void pointer ((void *)func).

• (const uint8_t data[], void *args) : These are the arguments the function takes.
const uint8_t data[] is an array ([] after a variable name means an array) of
constant (const , cannot be changed) unsigned 8-bit integers (uint8_t , _t indi-
cates it is a type). The void pointer void *args means that it will accept a pointer
to args of any type.

9

Remark | void * is not the null pointer type std::nullptr_t , which points to nothing.
void * is a special pointer that can point to anything.

Therefore the type can_rx_callback_t indicates a pointer to a function which takes a
constant array of bytes and a pointer to anything, and returns nothing.

2(e) Class Declaration

40 class CAN {
41 public:
42 CAN(const char *name = "can0");
43 ~CAN();
44 /**
45 * @brief Transmits a CAN message
46 * @param can_id The CAN ID to transmit to
47 * @param dat Pointer to the data to transmit
48 * @param len Length of the data in bytes
49 */
50 void Transmit(canid_t can_id, uint8_t *dat, int len);
51

52 /**
53 * @brief Receives a single CAN message
54 * @note This is a blocking call
55 */
56 void Receive();
57

58 /**
59 * @brief Closes the CAN socket and cleans up resources
60 */
61 void Close();
62

63 /**
64 * @brief Registers a callback for a specific CAN ID
65 * @param can_id The CAN ID to register for
66 * @param callback The callback function to invoke when message received
67 * @param args Optional arguments to pass to the callback
68 * @return 0 on success, -1 on failure
69 */
70 int RegisterCanDevice(canid_t can_id, can_rx_callback_t callback,
71 void *args = nullptr);
72

73 /**
74 * @brief Deregisters a callback for a specific CAN ID
75 * @param can_id The CAN ID to deregister
76 * @return 0 on success, -1 if CAN ID not found

10

77 */
78 int DeregisterCanDevice(canid_t can_id);
79 struct can_frame frx;
80

81 /**
82 * @brief Starts a thread to continuously receive CAN messages
83 * @param stop_flag Pointer to atomic bool to control thread execution
84 * @param interval_us Time between receive attempts in microseconds
85 */
86 std::atomic<bool> *StartReceiveThread(int interval_us = 10);
87 std::atomic<bool> *stop_flag_;
88

89 private:
90 int s;
91 struct sockaddr_can addr;
92 struct ifreq ifr;
93 struct can_frame ftx;
94 std::map<canid_t, std::pair<can_rx_callback_t, void *>> callback_map;
95 std::atomic<bool> *receive_thread_present_;
96 };

This is the declaration of our main CAN class. Let’s examine its components:

2(e).1 Access Specifiers

The class has two access specifiers, one on line 41 and the other on line 89:

• public : Members that can be accessed from outside the class

• private : Members that can only be accessed from within the class

2(e).2 Constructors and Destructors

42 CAN(const char *name = "can0");
43 ~CAN();

• The first line is the constructor. This is a special function with the same name as the
class that gets called when we create an object of this class. The name = "can0"
indicates the default value for name is “can0”.

• The second line is the destructor. This is called when the object is destroyed and is
used for cleanup.

Remark | Note that "can0" is assigned to a (constant) char * . In C++, strings can be
represented as an array of characters (a pointer is an array, and vice versa), or as a string
from the standard library Bookmarkstd::string.

11

2(e).3 Member Functions

The class declares several member functions:

• Transmit - For sending CAN messages.

• Receive - For receiving CAN messages.

• Close - For closing the CAN connection.

• RegisterCanDevice - For registering callbacks.

• DeregisterCanDevice - For removing callbacks.

• StartReceiveThread - For starting a background thread.

Let us take a look at Transmit :

50 /**
51 * @brief Transmits a CAN message
52 * @param can_id The CAN ID to transmit to
53 * @param dat Pointer to the data to transmit
54 * @param len Length of the data in bytes
55 */
56 void Transmit(canid_t can_id, uint8_t *dat, int len);

This function returns nothing (void) and takes three arguments.

• canid : canid_t comes from Bookmarklinux/can.h. It is just an alias for a 32-bit unsigned
integer.

• *dat : A pointer to a byte array.

• len : The length of the byte array.

Tip | Notice the comment before the Transmit function declaration. Notice it is in some
specific format. This is used to provide information to IDEs and automatic documentation
generators. It is good practice to write these.

Remark | Generally, it may not trivial to determine where an object ends in memory. In
many methods, you may have to provide the length of a data structure yourself.

We will explain the member functions in further detail in section 3.

12

2(e).4 Member Variables

The class has several member variables:
Public variables:

• struct can_frame frx; , on line 79: The definition of can_frame can be found in
Bookmarklinux/can.h. The prefix struct indicates that can_frame it is a struct. frx
is short for “frame receive”. We will be storing the CAN data we receive into this
structure.

• std::atomic<bool> *stop_flag_; , on line 87: A pointer to an atomic boolean. You
can think of an atomic variable as one that is thread safe. This flag stops the receive
thread when set to true. I will elaborate on this in section 3.

Private variables:

• int s; , on line 90: An integer to store the socket file descriptor. I will elaborate on
this in subsubsection 3(b).1.

• struct sockaddr_can addr , on line 91: sockaddr_can is a struct defined in
Bookmarklinux/can.h. It is used in socket configuration. I will elaborate on this in subsub-
section 3(b).6.

• struct ifreq ifr; , on line 92: ifreq is a struct defined in Bookmarknet/if.h. It is
used in socket configuration. I will elaborate on this in subsubsection 3(b).5.

• struct can_frame ftx; , on line 93: This shares the same type as frx . ftx is
short for “frame transmit”; we will be storing the data we want to send out into this
structure.

• std::map<canid_t, std::pair<can_rx_callback_t, void *>> callback_map; , on
line 94: Something to help us make callbacks. I will elaborate on this in subsubsec-
tion 3(e).5.

• std::atomic<bool> *receive_thread_present_ , on line 95: Another atomic boolean,
this one to make sure only one receive thread is running at a time.

2(f) Namespace Closing and a Note

97

98 } // namespace CANRAW

This closes the namespace we opened earlier. Notice the comment. If our file is littered with
lots of } s, it is good to include these comments to remind ourselves what ends where.

Here is a comment from me. If there is anything basic you do not understand (or if you
basically do not understand anything), take the time to search it up or ask an LLM. However,
there is no need to fully understand the networking/operating system bits.

13

3 Understanding our CAN Source File
Now let us examine the implementation file can.cc to see how the functions declared in
the header are actually implemented.

3(a) Include Statements and Namespace

1 /**
2 * *
3 * Copyright (C) 2025 RoboMaster. *
4 * Illini RoboMaster @ University of Illinois at Urbana-Champaign *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 3 of the License, or *
9 * (at your option) any later version. *

10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 * *
19 **/
20 #include "can.h"
21 #include "utils.h"
22 #include <chrono>
23 #include <cstring>
24 #include <thread>
25

26 namespace CANRAW {

Notice how we include our own header file with quotes "can.h" rather than angle brackets
(remember why?). Bookmarkutils.h contains basic functionality that I had to re-implement because
of the outdated version of the Angle-Right g++ the board uses.

• Bookmarkchrono: Provides tools to work with time. We use it for sleeping.

• Bookmarkcstring: Provides tools to work with strings in memory. This is the C++ version
of C’s Bookmarkstring.h library.

• Bookmarkthread: Multithreading. You can think of this as running multiple pieces of code at
once.

Remark | The Bookmarkthreading library in Python exists but due to the GIL your program still
runs on a single thread. You can search this up if you want.

14

We then re-enter the CANRAW namespace. If we did not, we would have to prefix everything
we defined in FILE-ALTcan.h with CANRAW:: . Exersise: why?

3(b) Constructor Implementation

28 CAN::CAN(const char *name) {
29 s = socket(PF_CAN, SOCK_RAW, CAN_RAW);
30 if (s < 1) {
31 std::cerr << "Error while opening socket" << std::endl;
32 }
33

34 strcpy(ifr.ifr_name, name);
35 ioctl(s, SIOCGIFINDEX, &ifr);
36

37 addr.can_family = AF_CAN;
38 addr.can_ifindex = ifr.ifr_ifindex;
39

40 if (bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
41 std::cerr << "Error while binding address" << std::endl;
42 }
43

44 stop_flag_->store(false);
45 receive_thread_present_->store(false);
46 }

3(b).1 Scope Resolution

28 CAN::CAN(const char *name) {

The CAN:: before the constructor name indicates that this function belongs to the CAN
class within the CANRAW namespace. const char *name takes a single argument Bookmarkname.

Tip | Notice that we set a default value in FILE-ALTcan.h and did not repeat it here. This is fine.

3(b).2 Socket Creation

29 s = socket(PF_CAN, SOCK_RAW, CAN_RAW);

This creates a socket.

Let us look at the declaration of this function in Bookmarksys/socket.h:

99 /* Create a new socket of type TYPE in domain DOMAIN, using
100 protocol PROTOCOL. If PROTOCOL is zero, one is chosen automatically.
101 Returns a file descriptor for the new socket, or -1 for errors. */
102 extern int socket (int __domain, int __type, int __protocol) __THROW;

Now we know know what this means:

15

• PF_CAN : Protocol family for CAN.

• SOCK_RAW : Raw socket type.

• CAN_RAW : CAN raw protocol.

Remeber the type of s ? It was an int . File descriptors, or fd for short, can be represented
as integers.

Remark | A socket is a file. In UNIX everything is represented as a file, including your
keyboard, mouse, screen, etc. On a UNIX device, you can look under the Folder-Open/dev folder to
see this.

3(b).3 Error Handling

30 if (s < 1) {

We check if the socket was created successfully by checking if s < 1 . If there’s an error, we
print a message to std::cerr (standard error output). Do you know why? Hint: read the
code block in subsubsection 3(b).2.

3(b).4 String Operations

34 strcpy(ifr.ifr_name, name);

This copies the interface name to the ifr structure. This is a C-style string operation.
strcpy was provided by Bookmarkcstring.

3(b).5 System Calls

30 ioctl(s, SIOCGIFINDEX, &ifr);

This is a system call. ioctl is provided by Bookmarksys/ioctl.h.

This performs the I/O control operation specified by REQUEST on FD. One argument may
follow; its presence and type depend on REQUEST. (Taken directly from a comment in
FILE-ALT/usr/include/sys/ioctl.h.)

• s : The file descriptor of our CAN socket.

• SIOCGIFINDEX : Retrieve the interface index of the interface into ifr_ifindex .
(Taken directly from Angle-Right man netdevice .)

• &ifr : A reference to a struct ifreq that will be populated with the interface infor-
mation; specifically, the SIOCGIFINDEX request informs the kernel to fill in ifr.ifr_ifindex
with the index of the network interface whose name is specified in ifr.ifr_name .

In human language, we are telling our computer to find the interface index of s and stick
it into the ifr_ifindex field of a ifreq structure that we pass by reference.

16

3(b).6 Struct Initialization

37 addr.can_family = AF_CAN;
38 addr.can_ifindex = ifr.ifr_ifindex;

After retrieving the interface index via ioctl , we initialize the sockaddr_can structure
addr , which is used to bind the socket to a specific CAN interface.

• addr.can_family = AF_CAN; : Sets the address family to CAN. This tells the kernel
we are working with CAN sockets.

• addr.can_ifindex = ifr.ifr_ifindex; : Assigns the interface index we obtained
earlier from the ifreq structure. Populating a struct with configuration data before
passing it to a system call is a common pattern in UNIX network programming. The
bind function (called next) uses this fully initialized addr to associate our raw CAN
socket with the desired hardware interface (e.g., can0).

Remark | In C and C++, structs are value types. When you declare a struct variable, its
fields are uninitialized unless explicitly assigned.

3(b).7 Binding

40 if (bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
41 std::cerr << "Error while binding address" << std::endl;
42 }

The bind system call associates the socket file descriptor s with a specific local address.
In this case, the CAN interface we’ve configured in the addr structure.

Here is the docstring above bind in Bookmarksys/socket.h:

111 /* Give the socket FD the local address ADDR (which is LEN bytes long). */
112 extern int bind (int __fd, __CONST_SOCKADDR_ARG __addr, socklen_t __len)
113 __THROW;

• s : The socket file descriptor returned by socket() .

• (struct sockaddr *)&addr : A pointer to the sockaddr_can structure we initial-
ized earlier. We cast it to sockaddr* because bind is a generic function that works
with any address family. It doesn’t know about sockaddr_can specifically, so we
must cast to its parent type.

• sizeof(addr) : The size of the address structure, so the kernel knows how much
memory to read from the pointer.

If bind fails (returns < 0), we print an error to std::cerr , indicating the socket could
not be bound to the specified interface.

17

Remark | In Linux networking, “binding” a socket means assigning it to a specific network
interface and/or port. For CAN sockets, there’s no “port”’, instead, you bind to a physical
or virtual CAN interface like can0 .

After binding, our socket is now ready to send and receive CAN frames on the specified
interface.

Remark | In POSIX systems, stdout (standard output) and stderr (standard error)
are the two file streams. Both are typically output to the terminal by default, but they
can be redirected independently. This separation is an arbitrary design choice made for
practicality: it allows users to capture normal program output (stdout) while still seeing
error messages (stderr) on screen, or vice versa. You can search up flow control operators
for more information.

3(b).8 Atomic Operations

43 stop_flag_->store(false);
44 receive_thread_present_->store(false);

We use ->store to set the atomic boolean values. Here we initialize the stop flag and the
receive flag to false .

3(c) Destructor Implementation

48 CAN::~CAN() { this->Close(); }

The destructor just calls the Close() method. The this-> syntax explicitly refers to the
current object.

3(d) Transmit Method

50 void CAN::Transmit(canid_t can_id, uint8_t *dat, int len) {
51 ftx.can_id = can_id;
52 ftx.can_dlc = clip(len, 0, CAN_MAX_DLEN);
53 memcpy(ftx.data, dat, sizeof(uint8_t) * ftx.can_dlc);
54 if (write(s, &ftx, sizeof(struct can_frame)) != sizeof(struct can_frame)) {
55 std::cerr << "Error while sending CAN frame" << std::endl;
56 }
57 }

Let us go through Transmit .

3(d).1 Struct Field Assignment

51 ftx.can_id = can_id;

The first step in transmitting a CAN message is assigning the target can_id to the can_id
field of the ftx . This field identifies which device or functional unit on the CAN bus should
receive the message.

18

3(d).2 DLC and Utility Function

52 ftx.can_dlc = clip(len, 0, CAN_MAX_DLEN);

Here we assign the Data Length Code (can_dlc) using a helper function clip . Since CAN
frames are limited to 8 bytes of data (defined by CAN_MAX_DLEN), this function ensures
len is clamped within valid bounds to prevent buffer overruns and malformed frames. We
use clip from our own Bookmarkutils.h because we are on a very old version of Angle-Right g++ where
std::clamp is not available.

template <typename T> T clip(T value, T min, T max) {
return value < min ? min : (value > max ? max : value);

}

Read through Bookmarklinux/can.h and see if you can understand.

107 /**
108 * struct can_frame - Classical CAN frame structure (aka CAN 2.0B)
109 * @can_id: CAN ID of the frame and CAN_*_FLAG flags, see canid_t definition
110 * @len: CAN frame payload length in byte (0 .. 8)
111 * @can_dlc: deprecated name for CAN frame payload length in byte (0 .. 8)
112 * @__pad: padding
113 * @__res0: reserved / padding
114 * @len8_dlc: optional DLC value (9 .. 15) at 8 byte payload length
115 * len8_dlc contains values from 9 .. 15 when the payload length is
116 * 8 bytes but the DLC value (see ISO 11898-1) is greater then 8.
117 * CAN_CTRLMODE_CC_LEN8_DLC flag has to be enabled in CAN driver.
118 * @data: CAN frame payload (up to 8 byte)
119 */
120 struct can_frame {
121 canid_t can_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */
122 union {
123 /* CAN frame payload length in byte (0 .. CAN_MAX_DLEN)
124 * was previously named can_dlc so we need to carry that
125 * name for legacy support
126 */
127 __u8 len;
128 __u8 can_dlc; /* deprecated */
129 } __attribute__((packed)); /* disable padding added in some ABIs */
130 __u8 __pad; /* padding */
131 __u8 __res0; /* reserved / padding */
132 __u8 len8_dlc; /* optional DLC for 8 byte payload length (9 .. 15) */
133 __u8 data[CAN_MAX_DLEN] __attribute__((aligned(8)));
134 };

Tip | We can see that can_dlc is marked deprecated. Deprecated means that a feature
has been removed or will be removed soon. Do not depend on deprecated features.

19

3(d).3 Memory Copying

53 memcpy(ftx.data, dat, sizeof(uint8_t) * ftx.can_dlc);

We copy the user-provided data buffer dat into the data array of the can_frame struc-
ture. memcpy (from Bookmarkcstring) performs a low-level byte-by-byte copy which is efficient
and safe for fixed-size buffers. Note that we use ftx.can_dlc (not len) to determine how
many bytes to copy, ensuring we never exceed the legal payload size even if the caller passed
a longer len .

3(d).4 Writing to Socket

54 if (write(s, &ftx, sizeof(struct can_frame)) != sizeof(struct can_frame)) {
55 std::cerr << "Error while sending CAN frame" << std::endl;
56 }

Finally we send the fully prepared can_frame through the socket file descriptor s using
the POSIX write system call. The kernel interprets this as a request to transmit a raw
CAN message over the bound interface. write returns the amount of bytes it wrote. If this
is less than expected (or −1), it indicates an error.

Remark | Remember, everything can be thought of as a file. We send the message by
writing our message to the file representing the CAN bus.

3(e) Receive Method

59 void CAN::Receive() {
60 if (read(s, &frx, sizeof(struct can_frame)) != sizeof(struct can_frame)) {
61 std::cerr << "Error while receiving CAN frame" << std::endl;
62 return;
63 }
64 auto it = callback_map.find(frx.can_id);
65 if (it != callback_map.end()) {
66 it->second.first(frx.data, it->second.second);
67 }
68 }

This method receives and distributes CAN frames.

3(e).1 Reading from Socket

60 if (read(s, &frx, sizeof(struct can_frame)) != sizeof(struct can_frame)) {

This reads a CAN frame from the socket. Note how this is like reading from a file. Again,
these are the same. Can you guess what this does based on subsubsection 3(d).4?

20

3(e).2 Auto Keyword

60 auto it = callback_map.find(frx.can_id);

We use the auto keyword to automatically deduce the type of the iterator. This is a
modern C++ feature that makes code more readable. callback_map is a map. I will
elaborate on it here and the next few subsubsections. Recall its signature and the signature
of can_rx_callback_t :

std::map<canid_t, std::pair<can_rx_callback_t, void *>> callback_map;
typedef void (*can_rx_callback_t)(const uint8_t data[], void *args);

Using auto for the iterator type avoids having to write out the full type:

std::map<canid_t, std::pair<can_rx_callback_t, void *>>::iterator it =
callback_map.find(frx.can_id);

which is a mess.

3(e).3 Map Lookup

We associate a CAN identifier (canid_t) with a callback function and an optional context
pointer (void *). When a CAN message is received, the system looks up the corresponding
can_id in callback_map with the find find method for maps (which returns an iterator).

3(e).4 Iterator Usage

We check if the iterator is valid (it != callback_map.end()) and then call the callback
function with it->second.first(frx.data, it->second.second) .

3(e).5 Callback Function

Recall that callback_map is a std::map with the following type signature:

std::map<canid_t, std::pair<can_rx_callback_t, void *>> callback_map;

This means each element in the map is a key-value pair where:

• The key is of type canid_t (the CAN identifier).

• The value is of type std::pair<can_rx_callback_t, void *> , which itself con-
tains two elements:

– first : A function pointer of type can_rx_callback_t . This is the callback
function to invoke.

– second : A void * . This is an optional user-provided argument (context) to
pass to the callback.

21

When we call callback_map.find(frx.can_id) , we get an iterator it pointing to the
found entry (or callback_map.end() if not found).

Assuming the lookup succeeds (it != callback_map.end()), then:

• it->second accesses std::pair<can_rx_callback_t, void *> , the value part of
the kv pair.

• it->second.first accesses the first element of that pair, the pointer to the function
to be called.

• it->second.second accesses the second element of that pair, the pointer to the
context (void *) to be passed to the callback.

Therefore, the full expression:

it->second.first(frx.data, it->second.second);

In English, this means: “If we have a callback registered for this CAN ID, call that function
now and give it the received data along with any user-specified context.”

This mechanism allows different parts of the system to register interest in specific CAN IDs
and respond automatically when messages arrive.

Remark | This pattern is common in embedded systems and robotics: decoupling message
reception from processing logic via callbacks. It promotes clean architecture and scalability
so you can add new handlers for new CAN IDs/types without modifying existing code.

3(f) Device Registration Methods

70 int CAN::RegisterCanDevice(canid_t can_id, can_rx_callback_t callback,
71 void *args) {
72 if (callback_map.size() >= MAX_CAN_DEVICES) {
73 std::cerr << "Maximum number of CAN devices reached" << std::endl;
74 return -1;
75 }
76 callback_map[can_id] = std::make_pair(callback, args);
77 return 0;
78 }
79

80 int CAN::DeregisterCanDevice(canid_t can_id) {
81 auto it = callback_map.find(can_id);
82 if (it != callback_map.end()) {
83 callback_map.erase(it);
84 return 0;
85 }
86 std::cerr << "Can ID " << can_id << " not registered" << std::endl;
87 return -1;
88 }

22

These methods are for managing the callback map.

3(f).1 Size Checking

72 if (callback_map.size() >= MAX_CAN_DEVICES) {
73 std::cerr << "Maximum number of CAN devices reached" << std::endl;
74 return -1;
75 }

We check if we’ve reached the maximum number of devices before adding a new one.

3(f).2 Pair Creation

76 callback_map[can_id] = std::make_pair(callback, args);

This creates a pair of values to store in our map.

3(f).3 Map Erasure

76 auto it = callback_map.find(can_id);
77 if (it != callback_map.end()) {
78 callback_map.erase(it);
79 return 0;
80 }

This attempts to find and remove an entry from the map.

3(g) Thread Management

90 std::atomic<bool> *CAN::StartReceiveThread(int interval_us) {
91 if (receive_thread_present_->load()) {
92 std::cerr << "Error: Receive thread already running" << std::endl;
93 return nullptr;
94 }
95

96 stop_flag_->store(false);
97 receive_thread_present_->store(true);
98 std::thread([this, interval_us]() {
99 while (!stop_flag_->load()) {

100 this->Receive();
101 std::this_thread::sleep_for(std::chrono::microseconds(interval_us));
102 }
103 receive_thread_present_->store(false);
104 }).detach();
105

106 return stop_flag_;
107 }

This method starts a background thread for receiving CAN messages:

23

3(g).1 Lambda Functions

98 std::thread([this, interval_us]()

The [this, interval_us]() { ... } syntax creates a lambda function (anonymous func-
tion). The variables in the square brackets (this and interval_us) mean that those
variables are available inside the scope of the lambda function.

Remark | Lambda functions allow us to define functions wherever we need with less
cumbersome syntax. It is often used when passing single-use functions to another function,
i.e. a sort or filter function.

3(g).2 Thread

98 std::thread([this, interval_us]() {
99 while (!stop_flag_->load()) {

100 this->Receive();
101 std::this_thread::sleep_for(std::chrono::microseconds(interval_us));
102 }
103 receive_thread_present_->store(false);
104 }).detach();

We first call the Receive function, then we call sleep_for . This pauses the thread for a
specified amount of time. Notice our while loop checks for !stop_flag_->load() . When
the stop flag is set, the thread stops.

3(g).3 Thread Detachment

.detach() detaches the thread so it runs independently.

3(h) Close Method

109 void CAN::Close() {
110 // Signal receive thread to stop
111 stop_flag_->store(true);
112 receive_thread_present_->store(false);
113 // Close socket
114 close(s);
115 }

This method cleans up resources by stopping the receive thread and closing the socket.

24

4 Using the CAN Class: Examples
Let’s look at how to use the CAN class in practice by examining the example files.

4(a) CAN Receive Example

21 #include "board/can.h"
22 #include "stdint.h"
23 #include "stdio.h"
24 #include <unistd.h>
25

26 void receive(CANRAW::CAN *can0) {
27 // CANRAW::CAN *can0 = new CANRAW::CAN("can0");
28 // read(, &can0->frx, sizeof(struct can_frame));
29 can0->Receive();
30 for (int i = 0; i < 8; i++) {
31 printf("%02x ", (int)can0->frx.data[i]);
32 }
33 printf("\n");
34 }
35

36 int main() {
37 CANRAW::CAN *can0 = new CANRAW::CAN("can0");
38 printf("Start can receive test\n");
39 while (true) {
40 receive(can0);
41 }
42 return 0;
43 }

This is FILE-ALTsrc/examples/can_receive.cc.

4(a).1 Object Creation

37 CANRAW::CAN *can0 = new CANRAW::CAN("can0");

This creates a new CAN object on the heap using the new operator.

4(a).2 Method Calls

29 can0->Receive();

This calls the Receive method using the arrow operator (->) to access methods on a
pointer.

25

4(a).3 Infinite Loop

39 while (true) {

This creates an infinite loop. We do this when there is something that must be run contin-
uously.

4(b) CAN Send Example

21 #include "board/can.h"
22

23 void sendtest() {
24 int i;
25 int len = 8;
26 uint8_t dat[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00};
27

28 CANRAW::CAN *can0 = new CANRAW::CAN("can0");
29

30 for (i = 0; i < 10; i++) {
31 can0->Transmit(0x200, dat, len);
32 }
33 can0->Close();
34 }
35

36 int main() {
37 std::cout << "Start can send test" << std::endl;
38 sendtest();
39 std::cout << "End can send test" << std::endl;
40

41 return 0;
42 }

This is FILE-ALTsrc/examples/can_send.cc. Try to figure this one out for yourself.

4(c) Receive Thread Example

21 #include "board/can.h"
22 #include "motor/motor.h"
23 #include <unistd.h>
24

25 int main() {
26 CANRAW::CAN *can = new CANRAW::CAN("can0");
27 control::MotorCANBase *motor = new control::Motor3508(can, 0x207);
28 control::MotorCANBase *motors[] = {motor};
29

30 std::atomic<bool> *can_stop = can->StartReceiveThread();

26

31 if (can_stop == nullptr) {
32 std::cerr << "Error: Could not start CAN receive thread" << std::endl;
33 return 1;
34 }
35

36 while (true) {
37 motor->SetOutput(400);
38 control::MotorCANBase::TransmitOutput(motors, 1);
39 motor->PrintData();
40 usleep(100);
41 }
42

43 return 0;
44 }

This is FILE-ALTsrc/examples/motor_m3508.cc. Take note of lines 26, 27 and 30. Can you figure
out what they do?

27

5 Concepts Covered
We breifly went over the following:

5(a) Basic Syntax

• Comments (/* */ and //)

• Include statements (#include)

• Preprocessor directives (#define , #pragma once)

• Header and implementation files

5(b) Object-Oriented Programming

• Classes and objects

• Access specifiers (public , private)

• Constructors and destructors

• Member functions and variables

• Namespaces

5(c) Memory Management

• Pointers and the * and -> operators

• Destructors

5(d) Standard Library

• Containers (std::map)

• Utility classes (std::pair)

• Thread support (std::thread , std::atomic)

• Time functions (std::chrono)

5(e) System Programming

• Linux socket API

• System calls (socket , bind , ioctl)

• File descriptor operations (read , write , close)

28

5(f) Modern C++ Features

• The auto keyword

• Lambda functions

29

6 Conclusion
This is the first tutorial, going over C++ and the Linux usage of CAN. There will be a
shorter second part, introducing the actual structure of a CAN packet and how we structure
data, i.e. communicating with multiple devices with a single packet.

If there are any concepts I have failed to cover, or you do not completely understand, search
it up and ask an LLM.

30

	Introduction
	Plan
	Basic Knowledge
	Types
	Pointers

	Understanding our CAN Header File
	Why header and source files?
	Include Guards and Headers
	Comments
	Include Statements
	Pragma Once

	Constants and Namespaces
	Typedef and Function Pointers
	Class Declaration
	Access Specifiers
	Constructors and Destructors
	Member Functions
	Member Variables

	Namespace Closing and a Note

	Understanding our CAN Source File
	Include Statements and Namespace
	Constructor Implementation
	Scope Resolution
	Socket Creation
	Error Handling
	String Operations
	System Calls
	Struct Initialization
	Binding
	Atomic Operations

	Destructor Implementation
	Transmit Method
	Struct Field Assignment
	DLC and Utility Function
	Memory Copying
	Writing to Socket

	Receive Method
	Reading from Socket
	Auto Keyword
	Map Lookup
	Iterator Usage
	Callback Function

	Device Registration Methods
	Size Checking
	Pair Creation
	Map Erasure

	Thread Management
	Lambda Functions
	Thread
	Thread Detachment

	Close Method

	Using the CAN Class: Examples
	CAN Receive Example
	Object Creation
	Method Calls
	Infinite Loop

	CAN Send Example
	Receive Thread Example

	Concepts Covered
	Basic Syntax
	Object-Oriented Programming
	Memory Management
	Standard Library
	System Programming
	Modern C++ Features

	Conclusion

